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Within a two-band model for the recently discovered ferropnictide materials, we calculate the thermal
conductivity assuming general superconducting states of A1g �“s-wave”� symmetry, considering both currently
popular isotropic “sign-changing” s states and states with strong anisotropy, including those which manifest
nodes or deep minima of the order parameter. We consider both intraband and interband disorder scattering
effects, and show that in situations where a low-temperature linear-T term exists in the thermal conductivity, it
is not always “universal” as in d-wave superconductors. We discuss the conditions under which such a term
can disappear, as well as how it can be induced by a magnetic field. We compare our results to several recent
experiments.
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I. INTRODUCTION

The symmetry class of the newly discovered ferropnictide
superconductors1 is still controversial, due in part to differing
results on superfluid density,2–7 angle-resolved photoemis-
sion spectroscopy �ARPES�,8–13 nuclear magnetic
resonance,14–19 Andreev spectroscopy,20–23 and other experi-
mental probes. In some cases, these experiments have been
interpreted as implying the absence of low-energy excita-
tions, i.e., a fully developed spectral gap. In others, low-
energy excitations have been observed and taken as indica-
tion of the existence of order-parameter nodes. It may be that
these differences depend on the stoichiometry or doping of
the materials, which affects the pairing interaction, or sample
quality, or both.

As in other classes of potentially unconventional super-
conductors, one’s ability to identify the symmetry class of
a candidate material by observation of low-T power laws
in temperature reflecting low-energy quasiparticle excitations
is limited by how low in T one can measure. At intermedi-
ate temperatures, variations in thermodynamic and trans-
port properties can be affected by details of band structure,
elastic and inelastic scattering, as well as the presence of
thermal phonons. Only at the very lowest T one can in prin-
ciple extract direct information on the order-parameter struc-
ture. Thermal conductivity measurements have played an im-
portant role in past discussions of unconventional
superconductivity,24,25 in part because they can be extended
to T on the order of tens of mK. In addition, such measure-
ments are distinguished because they are bulk probes and
because they are unusually sensitive to the presence of order-
parameter nodes. If lines of nodes are present, the thermal
conductivity ��T� manifests a low-T, linear in temperature
term which is purely electronic in origin and is associated
with residual quasiparticle states at the Fermi level, induced
by disorder or a magnetic field. If, in addition, the order
parameter averages to zero over the Fermi surface �as in the
d-wave case appropriate for the cuprates�, this linear-T term
in zero field is known to be “universal,” in the sense that its
magnitude is only weakly disorder dependent.

Very recently, several low-temperature measurements of
thermal transport have been made on the BaFe2As2 �Ba-122�
material doped with K,26,27 Co,28,29 P,30 and Ni,31 as well as
on the stoichiometric superconductor LaFePO.32 In the case
of the K-doped and Co-doped Ba-122 samples, either zero or
very small linear-T terms have been reported in zero field,
leading to the conclusion that there is a fully developed spec-
tral gap in these materials33 in these experimental works.
This is in contrast to reports of power-law temperature de-
pendence in the superfluid density measured on the same
materials,2–6 as well as other strong indications of low-
energy excitations. On the other hand, a P-doped Ba-122
sample clearly shows the presence of line nodes in both ther-
mal conductivity and penetration depth data.30 One way to
reconcile these experiments is to note that thermal conduc-
tivity at mK temperatures probes lower energy scales than
those measured in other experiments to date; thus it is pos-
sible that a band of low-energy excitations extends to very
low energies but not all the way to the Fermi level, either due
to an intrinsic highly anisotropic order parameter with deep
minima or a band of impurity states which lies at low but
nonzero excitation energies. Such impurity states can be pro-
duced, e.g., in isotropic, sign-changing s-wave pair state34–37

allowable in multiband systems if special conditions on the
ratio of intraband to interband scattering are met. However, a
further strong constraint from the thermal conductivity mea-
surements is that a significant linear-T term in the thermal
conductivity is observed with the application of a small mag-
netic field of order one Tesla and hence much below the
upper critical field, Hc2. This residual term grows with in-
creasing field. This would be consistent with the existence of
quasiparticle states at low but finite energy. References 27
and 28 on K- and Co-doped Ba-122 samples claimed that
this enhancement is significantly larger than that to be ex-
pected in the case of a conventional s-wave superconductor.
In contrast, Ref. 31 came to opposite conclusions on the
measurements of a Ni-doped sample, and Ref. 29 reported a
small but significant linear-T term in zero field in Co-doped
Ba-122.

A recent measurement of ��T� on the ferrophosphide su-
perconductor LaFePO finds a very large linear-T term.32 If
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this is interpreted as indicative of order-parameter nodes, it
would be consistent with the linear-T dependence in the su-
perfluid density also observed for this system.7 Note that
disorder in a sign-changing s state cannot produce such a
term in the superfluid density. This material is the only ma-
terial yet discovered among the growing ferropnictide family
of superconductors whose undoped “parent compound” is
superconducting at zero pressure. It is therefore expected to
be significantly cleaner than other superconductors discussed
here. This may be relevant because it has been proposed that
disorder in highly anisotropic “s-wave” �A1g symmetry�
states can “lift” shallow nodes in the order parameter, lead-
ing to a fully developed spectral gap.38 The authors of Ref.
32 note that, despite a very sharp resistive transition, this
cannot completely exclude the possibility that the linear-T
term is partly extrinsic; however, even in that case the domi-
nant dependence of the thermal conductivity on the magnetic
field should come from the superconducting phase.

There is a developing consensus that the gap changes sign
between the electron and hole Fermi-surface sheets. From
the theoretical standpoint, states with nodes or deep minima
appear to be quite natural. Several microscopic theories of
the spin-fluctuation mediated pairing interaction in the fer-
ropnictide materials have attempted to calculate the momen-
tum dependence of the order parameter associated with the
leading superconducting instability. Using a five Fe-orbital
model, Kuroki et al.39 performed a random phase approxi-
mation �RPA� calculation of the interaction to construct a
linearized gap equation and determined that the leading pair-
ing instability had s-wave �A1g� symmetry with nodes on the
electronlike Fermi surface �“� sheets”�. Wang et al.40 studied
the same pairing problem within a five-orbital framework
using the functional renormalization group approach, also
finding that the leading pairing instability is in the A1g-wave
channel, and that the next leading channel had B1g �dx2−y2�
symmetry. For their interaction parameters, they found no
nodes on the Fermi surface but nevertheless a significant
variation in the magnitude of the gap. Graser et al.41 also
performed a five-orbital RPA framework, using the density-
functional theory band structure of Cao et al.42 as a starting
point. These results indicated that the leading pairing chan-
nels were indeed of anisotropic s �A1g� and dx2−y2 symmetry
and that one or the other could be the leading eigenvalue,
depending on details of interaction parameters. More re-
cently, several authors have investigated the factors leading
to this anisotropy including intrasheet Coulomb interaction,
nesting of electron pockets, and orbital character of pairing
which can influence order-parameter anisotropy within these
models.43–45 Other approaches have also obtained A1g gaps
which change sign between the hole and electron Fermi-
surface sheets but remain approximately isotropic on each
sheet.46–48

In this paper we calculate the expected thermal conduc-
tivity in superconducting states potentially appropriate to the
ferropnictide superconductors. We adopt for convenience a
phenomenological two-band model, allowing order param-
eters on two Fermi-surface sheets representing the hole- and
electron-doped sheets found in density-functional theory cal-
culations for these materials. We consider the region outside
of the doping range where superconductivity may coexist

with antiferromagnetism. Our model for disorder consists of
terms allowing for scattering within �intraband� and between
�interband� Fermi-surface sheets, of arbitrary strength. This
allows us to control the width and position of the impurity
band in both nodal pairing states and those with a fully de-
veloped spectral gap, which we examine with a view toward
determining the size and universality of the linear-T term in
� at the lowest temperatures. After examining the zero-field
situation, we discuss the effect of an applied field. To this
end we adopt the method of Brandt-Pesch-Tewordt �BPT� to
obtain predictions for the widest possible field range. We
illustrate the various possibilities of superconducting state
and disorder types which allow the results observed thus far
in experiments.

II. MODEL

We begin by assuming a metallic system with two bands 1
and 2, characterized by densities of states N1 and N2 at the
Fermi level, and a pair interaction which is a sum of sepa-
rable terms

V�k,k�� = V1�1�k��1�k�� + V2�2�k��2�k��

+ V12��1�k��2�k�� + �2�k��1�k��� , �1�

where �i is function of A1g symmetry depending on momen-
tum restricted to band i=1,2.

For disorder we will assume an orbital-independent ma-
trix element which scatters quasiparticles either within a
given band with amplitude Uii, i=1,2, or between bands
with amplitude U12. As discussed in the Appendix A, we sum
all single-site scattering processes of arbitrary strength to ob-
tain a disorder-averaged Nambu self-energy �� =nimpT� , where
nimp is the concentration of impurities. For simplicity, we
assume equal densities of states Ni=N0 with U11=U22�Ud,
where subscript d stands for diagonal in band basis, through-
out the paper. In our preliminary considerations we restrict
ourselves to purely intraband scattering, U12=0. The disorder
is characterized by two intraband-scattering parameters on
each sheet: �i�nimp / ��Ni� and ci=1 / ��NiUii�; for our
simple initial case with two symmetric bands we set �i=�
and ci=c, i=1,2. The initial neglect of interband scattering
may be understood in zeroth order by noting that a screened
Coulomb potential with screening length of order a unit-cell
size will generically have predominantly small-q scattering.
The real situation is somewhat more complex since the same
orbitals contribute to both electron and hole Fermi-surface
sheets,41 and therefore a substitutional impurity, such as Co,
may be expected to produce a significant interband-scattering
component as well. Hence we relax this requirement and
below also analyze the regime U12�Ud, and, in particular,
the case U12=Ud, as discussed in Ref. 36. Weak interband
scattering U12�Ud does not qualitatively change the results
obtained in the limit U12=0.

The full matrix Green’s function in the presence of scat-
tering in the superconducting state is given by a diagonal
matrix in band space, as discussed in the Appendix B
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G� �k,	� =
	̃
0 + �̃k
3 + �̃k
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	̃2 − �̃k
2 − �̃k

2
, �2�

where k=ki�Si is restricted to Fermi-surface sheet Si with
i=1,2 and the renormalized quantities 	̃�	−�0, �̃k��k

+�3, and �̃k��k+�1 also depend on the band indices
through k. The � are the components of the self-energy
proportional to the Pauli matrices 
 in particle-hole
�Nambu� space. Below we focus on two quantities. It is use-
ful to start with the analysis of the total density of quasipar-
ticle states �DOS�
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1
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�
ki

G� �ki,	� ,
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where the second equality indicates the explicit integration
over distinct Fermi-surface sheets with momenta ki. We will
be comparing results for the DOS with thermal conductivity
� calculated using the standard approach49,50

� = �
i
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8
�
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2 − 	̃i

21 +
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2 − 	̃i
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��

�

. �4�

Here �..�� is average over each Fermi-surface sheet, �i de-
notes the sum over the bands, and vFi is the Fermi velocity
on sheet i. We assume cylindrical Fermi surfaces so that vFi
is isotropic. In Eq. �4� the 	2 term comes from the heat
current vertex and therefore is unrenormalized by scattering.

III. ISOTROPIC A1g STATES

We first discuss the thermal conductivity in isotropic
s-wave or A1g states. If the sign of the order parameter � is
the same on both sheets and no magnetic disorder is present,
the low-T thermal conductivity will be similar to classic cal-
culations for conventional superconductors and yield an ex-
ponential low-T dependence for the electronic part. In the
case of a sign-changing s �“s�”� state proposed by Mazin
et al.,46 the situation is more interesting. Here one assumes
an isotropic �i on each sheet i but assumes that sgn �1=
−sgn �2. In terms of Eq. �1�, we choose the functions
�i�k�=1 for k�Si and zero otherwise, and fix the sign of
V12 to be opposite to that of V1 ,V2 so as to induce a sign-
changing order parameter between the two sheets. In the
clean case, we continue to expect an exponential temperature
dependence of the thermal conductivity, characteristic of
fully gapped Fermi surface. On the other hand, in such sys-
tems ordinary disorder is pairbreaking if it includes a strong
interband component.34–37 For some situations a low-energy
impurity band may indeed give rise to a linear-T term in the
thermal conductivity.

For simplicity, we assume �2=−�1�� and equal densi-
ties of states on the two bands. In Fig. 1, we now illustrate
the correspondence between the formation of the impurity

band in the fully gapped state and the creation of the linear
term. In the absence of interband scattering, there is no pair
breaking in the sense of Anderson’s theorem and the spectral
gap in the DOS is identical to the unrenormalized order pa-
rameter �, corresponding to an activated thermal conductiv-
ity �exp�−� /T�. As interband scattering is increased, states
are pulled down from the continuum into the gap, creating
eventually a band of midgap states in the DOS, as shown. If
there is still a narrow energy range which is gapped near the
Fermi level, this smaller gap determines the slower but still
exponential decrease in � at the lowest temperatures. As
soon as the impurity band of midgap states overlaps the
Fermi level, a linear term in � appears.35,51 Note that a sig-
nificant interband component of scattering essentially equal
to the intraband component is absolutely necessary for this to
occur, which requires special conditions as described above.

We note further that if one varies the concentration of
impurities in the situation with U12=Ud, the change in the
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FIG. 1. �Color online� �a� Density of states and �b� thermal
conductivity for an isotropic s� state with �1=−�2, shown for Ud

=U11=U22 �intraband scattering� and scattering-rate parameters c
=0.07 and �=0.3Tc0 in cases �i� weak intraband scattering only,
U12 /Ud=0 �solid line�; �ii� pair-breaking scattering with midgap
impurity band, U12 /Ud=0.98 �dashed line�; and �iii� pair-breaking
scattering with impurity band overlapping Fermi level, U12 /Ud

=1.0 �dotted line�.
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residual density of states N�0� is reflected directly in the
slope of the thermal conductivity, as shown in Fig. 2. This is
not surprising but is in dramatic contrast to the universal
�disorder-independent� behavior observed in d-wave super-
conductors. This raises the question of the degree of univer-
sality of transport coefficients in pairing states which have
s-wave A1g character but also display nodes.

IV. ANISOTROPIC A1g STATES

We now examine states within the same A1g symmetry
class but where gap minima are either very deep with no sign
change or with actual sign change �nodes�. To make contact
with microscopic theory �see, e.g., Ref. 41�, we assume that
one of the sheets �in microscopic theory, the so-called “”
sheet around the � point� has an isotropic order parameter
while the other �the “�” sheet around the M point� has a
highly anisotropic one. In this case, the order parameters in
the two bands are given by

�1 = − � , �5�

�2 = �iso + �ani cos 2� , �6�

where � is the angle parameterizing the electron Fermi sur-
face sheet 2. It useful to define the gap ratio in the electron-
like band, r��ani /�iso, so that r�1 ��ani��iso� gives a
state with nodes in that band while r�1 ��ani��iso� has
none.

To obtain this order parameter from Eq. �1�, we choose

�1�k� = �1 k � S1

0 otherwise
� , �7�

�2�k� = �1 + rV cos�2�� k � S2

0 otherwise
� , �8�

where as before, S1 and S2 represent the hole and electron
Fermi surfaces, respectively. In the clean limit, the gap equa-
tion is

�i��� = 2�T�
	n

�i���

� �
j
�

���Sj

NjVij� j����
� j����

�	n
2 + � j

2����
, �9�

where 	n are fermionic Matsubara frequency. Below we ad-
just the value of rV to study a nodal system with r=1.3 and
an anisotropic state with no nodes with r=0.9.

In the presence of disorder, we evaluate the impurity av-
erage self-energies �i, for both the bands, where again i is
the band index and  is the Nambu index. This calculation is
detailed in the Appendix A with the results presented in Eqs.
�A8�–�A11�. Since the structure of the order parameter in the
clean limit already supports low-energy excitations, we ig-
nore the interband scattering in the first analysis, and focus
on the effects of intraband scattering alone.52,53 We define the
conventional renormalized quantities

	̃i = 	 − �i,0 i = 1,2, �10�

�̃i = �i + �i,1, �11�

where in each case the first subscript is a band index while
the second one is a Nambu index. Since the self-energy is k
independent in this approximation, we can associate the self-
energy with the renormalization of the isotropic component,

�̃iso=�iso+�2,1, but this is simply a matter of convenience.
The total thermal conductivity comes from sum over both
bands but at very low temperatures the contribution from the
first band is very small due to the fully developed gap as-
sumed.

A. A1g states with nodes

We first discuss the situation where �2�k� has nodes but a
nonzero average over the Fermi surface and for concreteness
take r=1.3. The behavior of the low-T thermal conductivity
with increasing disorder for a case with individual scatterers
near the strong potential limit is now shown in Fig. 3.

The evolution of ��T� is very different from that for a
pure d-wave superconductor. This is clearly seen from the
evolution of the T=0 limit of the thermal conductivity. In the
pure case the linear term is nearly invisible. As intraband
disorder is increased, the linear term significantly increases
in magnitude, goes through a maximum and eventually dis-
appears, leading to an exponential temperature dependence.
To some extent this behavior can be understood by examin-
ing the corresponding density of states as shown in the upper
panel; as disorder increases, the nodal quasiparticle states are
broadened and a residual density of states appears but as
disorder is increased further the nodes are lifted and a fully
developed spectral gap appears, as discussed in Ref. 38.
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1 but U12 /Ud=1.0 and �=0.2,0.25, and 0.3Tc0.
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To clarify why there is no “universal independence” of
weak disorder expected, e.g., for d-wave superconduc-
tors,54–56 we plot in Fig. 4 the value of the asymptotic low-T
limiting value of � /T as a function of disorder; there is, for
this case, no range of disorder where the behavior can in any
sense be called universal. This result is somewhat similar to
that in Ref. 57 where the effect of an orthorhombic distortion
on the in-plane thermal conductivity of YBa2Cu3O7 was
studied. Note that in their case the s-wave component of the
d+s order parameter breaks A1g symmetry in the ab plane. In
our case A1g is preserved because there are two � sheets
whose nodal structures are rotated with respect to each other
by 90°.41

To analyze the origin of the breakdown of universality in
the anisotropic A1g state, we evaluate the T→0 limit by re-
placing the derivative of the Fermi function by a delta func-
tion and integrating over the energy 	. The isotropic band 1
does not contribute to the thermal conductivity at very low
temperature because it is fully gapped. The main contribu-

tion comes therefore from the nodal states from band 2. In
contrast to a d-wave superconductor, here the anomalous
self-energy �2,1 is finite, therefore the compensation between
the density of states and the scattering rate does not occur,
and the universal behavior breaks down. As a result, the po-
sition of the nodes on the Fermi-surface shifts and the slope
of the gap changes.

If we linearize the gap near the node, �̃����kFv���0
−��, where �0 is the location of node, determined from
cos 2�0=−��iso+�2,1�	=0�� /�ani, the renormalized gap
slope is

v� = 2kF
−1�ani sin�2�0� , �12�

=2kF
−1��ani

2 − ��iso + �2,1�	 = 0��2. �13�

Summing over the nodes, we find

�

T
�

NvF
2�

3

2

kFv�

, �14�

which has precisely the same form as the well-known
d-wave result �to leading order in v� /vF�, except that the gap
velocity v�, which is unrenormalized by disorder in the
d-wave case, is strongly disorder dependent here due to the
nonzero off-diagonal impurity self-energy �2,1 in Eq. �13�.
The increase in the residual thermal conductivity is therefore
due to the flattening of the gap in the near-nodal region be-
fore the system becomes fully gapped at higher impurity-
scattering rates. The absence of the residual linear term in
this picture is only consistent with a sufficiently high disor-
der, when the spectral gap is finite.
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FIG. 3. �Color online� Density of states N�w� /NTotal �top� and
normalized thermal conductivity ���T� /T� / ��n /Tc� vs T /Tc for two-
band anisotropic model with isotropic order parameter on sheet 1
and anisotropic order parameter �1=−1.1Tc0 on sheet 1 and �iso

=1.3Tc0, r=1.3 on sheet 2 �Eq. �6��. Results shown for various
values of intraband-scattering rate � /Tc0 and c=0.07, and no intra-
band scattering, U12=0.
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B. Anisotropic states with deep gap minima

An alternative scenario for the absence of a linear term in
��T� in K-, Ni-, and Co-doped 122 ferropnictide
materials,27,28,31 is a highly anisotropic state on at least one
of the Fermi-surface sheets with deep minima but no true
nodes. Here we choose �ani��iso �r=0.9� to simulate a situ-
ation where the clean state is slightly gapped, and varies
between a minimum value of �iso−�ani and a maximum
value of �iso+�ani. Again we begin by including only intra-
band impurity scattering, for which the results are shown in
Fig. 5. In this case, disorder merely increases the spectral gap
due to averaging, as discussed in Ref. 38, leading to an in-
creasingly rapid exponential decay.

If interband scattering is included, low-energy states ap-
pear, similarly to the s� case considered above but again we
find that the values of interband scattering strength U12 near
the intraband value Ud are necessary to create such states
sufficiently near the Fermi level to create a linear term in �.

For simplicity, therefore, we take both interband and intra-
band scattering potentials to be equal, i.e., the scattering is
uniform in entire Brillouin zone. For intermediate to strong
potentials, states are then created near the Fermi level. It is
important to remember that such scattering rapidly sup-
presses Tc, as illustrated in Fig. 6. The next figure exhibits
the thermal conductivity for this system. Because the pure
system has a small spectral gap, even the smallest disorder in
this limit gives rise to an impurity band close to the Fermi
level, creating unpaired quasiparticles. For significant impu-
rity concentrations, a strong linear term appears which also
of course violates universality, as shown explicitly in Fig. 7.
The variation in this linear term with disorder for uniform
scattering is shown in Fig. 8 and compared to an approxima-
tion based on a series expansion around � /2 for ��. We find

�

T
�

N2vF2
2 �

6

�2
2

�2
2 + ��iso + �2,1 − �ani�2

�
1

��ani��iso + �2,1 − �ani�

+
N1vF1

2 �2

6

�1
2

��1
2 + �� + �1,1�2�3/2 , �15�

where �i are the normal-state scattering rates defined above
and all the self-energies are evaluated at 	=0. Note that
there now appears a contribution from the isotropic band 1
because Eq. �15� assumes the uniform scattering U12=Ud,
which leads to strong pair breaking and quasiparticle states
near the Fermi level. Consequently, the absence of the re-
sidual linear term in � is also consistent with the deep
minima provided the interband scattering is not too strong.
We now proceed to investigate the field dependence in the
two cases.
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V. FIELD DEPENDENCE

Thermal conductivity depends on the applied magnetic
field since the density of unpaired electrons depends on the
field magnitude. These electrons carry entropy and hence
enhance the heat current. They also scatter phonons and
therefore reduce the lattice contribution to the thermal trans-
port so that the two effects compete. On general grounds,
��T ,H� that increases at low temperatures with applied field
can be assumed to contain a substantial electronic
component.24 In some systems, such as heavy fermion met-
als, the electron contribution to the thermal conductivity is
dominant, allowing a direct probe of the heat transport in the
superconducting state throughout the T-H plane.58 In other
materials, where the phonon contribution is substantial, the
quantity that lends itself most easily to analysis is the re-
sidual linear term in the thermal conductivity, limT→0 � /T,
which is purely electronic since the phonon contribution van-
ishes in that limit.59–61

Therefore, for the purposes of comparison with experi-
ment, we focus on the field dependence of the electronic

thermal conductivity at low temperature. In nodal supercon-
ductors, where the transport is dominated by bulk quasipar-
ticles with momenta nearly along the nodal directions, two
methods have been employed to describe this dependence.
The semiclassical approach is based on the observation that
the energy to break a Cooper pair is lowered outside of the
vortex core since the unpaired electrons do not participate in
the supercurrent flowing around the vortex. Hence effect of
the field can be described by the Doppler shift of the quasi-
particle energy, vs�r� ·kF, where vs�r� is the supervelocity
field determined by the vortex structure.62–64 This energy
shift is local and therefore the method is very well suited for
describing the thermodynamic quantities but requires addi-
tional assumptions to account for correlation functions and
transport properties.65–68 It is applicable at low energies and
therefore restricted to low temperatures and fields.

An alternative approach assumes the existence of the vor-
tex lattice and describes the behavior starting from the mod-
erate to high-field regime. The approximation consists of
replacing the diagonal, in Nambu space, components of
the Green’s function with their averages over the unit cell of
the vortex lattice while keeping the exact spatial dependence
of the off-diagonal, Gor’kov components. It was developed
for conventional superconductors by Brandt, Pesch, and
Tewordt,69,70 who showed that the replacement is valid
since the Fourier components of the Green’s function �in
reciprocal-lattice vectors of the vortex lattice, K�, vary as
GK�exp�−�2K2�, where �2=�c /eB is the magnetic length,
which is of the order of the intervortex distance. The method
gives excellent agreement with experimental results on both
thermodynamic and transport properties of superconductors
near the upper critical field,71,72 and remains semiquantita-
tively correct in s-wave superconductors down to fields of
less than half of Hc2.73 It fails at the lowest fields, when the
unpaired electrons are localized in the vortex cores and con-
sequently cannot be described by the propagators averaged
over the �much greater� unit-cell size. In this low-field limit,
the method gives artificially enhanced behavior of the ther-
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mal conductivity as it treats the localized states as extended
and generically produces a power-law increase in ��H ,T�
while both the expected and the experimentally observed ini-
tial increase in ��H ,T� is exponentially small.

In contrast, the extension of the BPT method to the nodal
superconductors74–78 remains valid down to lowest fields
since even in that regime the transport is dominated by the
extended states. It gives results qualitatively and quantita-
tively consistent with the Doppler shift method,79,80 and
hence describes the properties over nearly the entire range of
the temperatures and fields. We employ this method here.

We extend the approach of Ref. 78 to the two-band
model. The matrix Green’s functions of the electron and hole
bands are coupled by the self-consistency equation for the
order parameter and the T matrix as shown in Eq. �9� and
Eqs. �A8�–�A11�. We model the vortex lattice as76,77

�i�R,�� = �
ky

Cky
�i���eikyyF0	 x − �2ky

�

 , �16�

where F0 is the ground-state oscillator wave function, the
coefficients Cky

determine the structure of the vortex state
and the amplitude of the order parameter, and i is the band
index. Since the bands are treated as independent, the ther-
mal conductivity is the sum of the contributions due to the
hole and the electron sheets of the Fermi surface.

Our approach is most reliable for the states with nodes in
the gap function, when the results can be trusted over essen-
tially the entire field range. Note that even though the hole
band is always fully gapped in our analysis, at low fields the
dominant contribution is from the electron band with gap
nodes. The main feature in the field dependence, as shown in
Fig. 9 is the pronounced inflection point at low fields where
a crossover from a rapid rise to a slower increase occurs.
This result bears striking resemblance to the recent measure-

ments on LaFePO superconductor,32 which were interpreted
precisely in the framework of the two-band picture, with one
band possessing nodes in the gap. This rapid increase is re-
lated to a significant variation in the density of states with
energy in zero field, shown in Fig. 3.

Note also that when the residual linear-T term is near its
maximal value in Fig. 4, which for parameters here occurs
near � /Tc0�0.31, the field and temperature dependence of
��T ,H� is very weak, more reminiscent of that of a fully
gapped superconductor. The nodes however are not lifted up
to a higher impurity concentration, � /Tc0�0.50. The reason
for this is clear from comparisons with Ref. 38: as the slope
of the gap near the node becomes small, the shape of the gap
function deviates from a simple cosine, and becomes very
steep beyond the near-nodal region, so that moderate field
essentially does not excite additional quasiparticles.

In general, we do need to keep in mind that, as the nodes
are lifted, the applicability of the BPT approximation at low
fields becomes questionable but the minimal gap in the re-
gime we show here, � /Tc0�0.94, is small, and therefore the
method remains reliable to very low fields. Quite generally,
the energy scales associated with the effect of magnetic field
on the extended quasiparticles are of order E0���H /Hc2 so
that for the �min /��0.1 we expect the extended states to
dominate the response for H /Hc2�0.01. Consequently, we
trust the approximation even in the regime when the nodes
are lifted.

This argument allows us to extend the treatment to the
state with the deep minima rather than the true nodes. We
consider once again r=0.9 and show the results in Fig. 10.
As can be expected from a probe that is sensitive to the
amplitude, rather than the phase, of the gap function, the
overall features are quite similar to those for a true nodal
gap. The low-field inflection and the rapid rise are not as
clearly pronounced, consistent with the absence of true nodal
quasiparticles until the field is sufficiently high. As pointed
out above, for the nodeless state the inclusion of strong in-
terband scattering leads to a rapid enhancement in the re-
sidual density of states and the concomitant increase in the
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residual linear term in the thermal conductivity.
Finally, in Fig. 11 we show the results for the isotropic s�

state. While in this case we do not trust our approximation at
low fields, it is clear that the increase in the thermal conduc-
tivity with the magnetic field is much slower than for the two
cases considered above. To produce an even moderately
rapid growth of ��H� at low fields requires a substantial re-
sidual linear term as well as unphysically high interband
scattering, see bottom right panel of Fig. 11. This result
strongly suggests that the isotropic s� state is incompatible
with the results of Ref. 27 on the 122 series of materials, just
as the results of Ref. 32 exclude this order-parameter struc-
ture in the LaFePO system.

VI. CONCLUSIONS

We have argued that thermal conductivity is the ideal
probe to resolve current apparent discrepancies between vari-
ous thermodynamic and spectroscopic measurements on the
Fe-based superconductors. In particular, since several of
these experiments indicate the existence of low-lying quasi-
particle states in certain materials, it is important to settle
whether or not these excitations extend all the way down to
the Fermi energy or whether there is a true spectral gap in the
system. Thermal conductivity, a bulk probe, is currently
measurable to lower temperatures than other probes so it
may be able to settle this dispute and also distinguish be-
tween two popular scenarios. The two most likely order pa-
rameters for these systems appear at present to be the isotro-
pic s� state proposed by Mazin et al.46 and highly
anisotropic A1g states with nodes or deep gap minima found
in spin-fluctuation calculations. The former state can be con-
sistent with the reports of low-lying excitations only if pair
breaking disorder induces an impurity band while the latter
are difficult to reconcile with ARPES experiments indicating
a large spectral gap in some materials.

We have therefore calculated the thermal conductivity of
a superconductor with A1g symmetry order parameter in a

model two-band system and considered the effects of intra-
band and interband disorders. In zero field, we have shown
that the linear-T term which dominates ��T� at low tempera-
tures has a coefficient which is nonuniversal �unlike the well-
known d-wave case� and depends nonmonotonically on dis-
order. Details depend on the precise order-parameter
structure of the model pure system and on location of the
impurity band in the DOS. The linear-T term in zero field
found in the LaFePO12 and P-doped 122 materials,32 is con-
sistent in principle with the linear-T penetration depth ob-
served in the same system7 and suggestive of nodes in the
superconducting order parameter. This term is rather large as
a fraction of the normal-state thermal conductivity. Within
the present theoretical approach realistic evaluation of the
normal state � is difficult, as we have neglected both
phonons, which would enhance this contribution, and inelas-
tic electronic scattering, which would suppress it. It seems
likely that it would be difficult to account for the size of the
residual term within the current framework, and it is pos-
sible, as Ref. 31 mentions, that it is of extrinsic origin. In the
K- or co-doped 122 systems, the extremely small or zero
linear-T term27,31 suggests a true spectral gap, consistent ei-
ther with an isotropic s� state or a gap with deep minima.

An examination of the field dependence of the low-
temperature thermal conductivity within the BPT approach
has enabled us to draw further conclusions. The size of the
initial field dependence seen in experiment rules out a clean
s� state as a possible candidate for the 122 materials. How-
ever, as pointed out in the context of other experiments, pair-
breaking scattering can induce a low-lying impurity band in
such a state and produce responses similar to highly aniso-
tropic states. We have analyzed this situation and found that
the amount of pair-breaking �interband� scattering required
to reproduce the observed field dependence is large. In most
situations this is unphysical, both in the sense that the ratio
of interband to intraband scattering must be tuned to a spe-
cial value �which seems unreasonable in the context of
screened Coulomb scattering� and because a very large con-
comitant Tc suppression would be produced. As mentioned
above, an argument for a sizeable interband scattering com-
ponent may be made for Co-doped systems but the general
argument against fine tuning to a special value still holds and
the experimental agreement between the behavior of the ther-
mal conductivity on systems with different dopants indicates
the generic features of the material. The evolution of the
thermal conductivity with Co doping,28 however, may be at
least in part due to the strong interband scattering compo-
nent. We therefore conclude that the most likely candidate
for the order parameter in the 122 materials is a highly an-
isotropic A1g state with deep gap minima, probably on the
electron ��� sheets. How this conclusion can be reconciled
with ARPES experiments is not clear at this writing. We
emphasize that controlled disorder not associated with dop-
ing, such as electronic irradiation, would provide the best test
of the predictions of our theory.
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APPENDIX A: BASIC FORMALISM

For low-impurity concentrations, one can ignore the pro-
cesses which involve scattering from multiple impurity sites.
Within this single-site approximation, we sum all possible
scattering events from a single site to calculate the disorder-
averaged t matrix, which is then related to the one-electron
self-energy as

�̂�k,	� = nimpT̂k,k�	� , �A1�

where nimp is the impurity concentration, and, for isotropic

scatterers, T̂k,k�	�= T̂�	�, and hence �̂�	�, has no momen-
tum dependence. For a multiband superconductor, scattering
from impurities can occur within a given band with potential
Uii, or between the bands with potential Uij, i� j. Figure 12
shows the impurity averaged diagrams for the self-energy �
which occur up to third order for a two-band system. Any
process which involves odd number of interband scatterings
does not contribute to the self-energy because the Green’s
function and self-energy in the translationally invariant
disorder-averaged system are diagonal in band index.

The sum of all the diagrams involving a single impurity
site can be expressed compactly as

T̂i =
1

1 − Ûi
ef f�Ĝi�k

Ûi
ef f , �A2�

where the effective impurity potential for ith band is

Ûi
ef f = Ûii + Ûij�Ĝj�kÛji. �A3�

In a Nambu basis

Ûij = Uij
3, �A4�

�Ĝi�k = gi,0
0 + gi,1
1. �A5�

Here gi, are the Nambu components of the momentum-
integrated Green’s function. The first subscript i�=1,2� in
gi, stands for the band and the second subscript �
=0,1 ,2 ,3� represents the Nambu channel.

The effective potential for the first band may be written

Û11
ef f = U11
3 + U12

2 
3Ĝ2
1

1 − Û22Ĝ2
�
3, �A6�

In the above equations, U11,U22 are the intraband impurity
potential strengths in band 1 and 2, respectively, while U12 is
the interband impurity potential strength. The t matrix for,
e.g., the first band may now be written as

T̂1 =
1

1 − Û11
ef fĜ1

�Û11
ef f� . �A7�

After some Pauli-matrix algebra, we find that the self-
energy components in band and Nambu channels may be
written as

�1,0 =
nimp

D
�U11

2 g1,0 + U12
2 g2,0

− g1,0�U12
2 − U11U22�2�g2,0

2 − g2,1
2 �� , �A8�

�1,1 = −
nimp

D
�U11

2 g1,1 + U12
2 g2,1

− g1,0�U12
2 − U11U22�2�g2,0

2 − g2,1
2 �� , �A9�

�2, = ��1,2→2,1�,, �A10�

D = 1 – 2U12
2 �g1,0g2,0 − g1,1g2,1� + �U12

2 − U11U22�2�g1,0
2 − g1,1

2 �

��g2,0
2 − g2,1

2 � − U22
2 �g2,0

2 − g2,1
2 � − U11

2 �g1,0
2 − g1,1

2 � . �A11�

Here again the first subscript in �i, represents the band in-
dex and the second subscript  denotes the Nambu channel.
Equations �A8� and �A9� give the self-energy for band 1, as
denoted in Eq. �A10�. To get the self-energy in the second
band, one has to interchange the band indices 1↔2.

APPENDIX B: SPECIAL CASES

1. Born limit of two-band case

In the Born limit, we will keep the terms up to second
order in “Uij” so the denominator becomes 1 and we get

�1,0 = nimp�U11
2 g1,0 + U12

2 g2,0� , �B1�

�1,1 = − nimp�U11
2 g1,1 + U12

2 g2,2� , �B2�

�2,0 = nimp�U22
2 g2,0 + U12

2 g1,0� , �B3�

�2,1 = − nimp�U22
2 g2,2 + U12

2 g1,2� . �B4�
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FIG. 12. �Color online� These are the impurity averaged dia-
grams, which contribute to the self-energy of the first-band Green’s
function. Here the interband contribution comes through processes,
which involve even number of interband scatterings. The diagrams
also take into account the order of interband and intraband scatter-
ings. Uij is the impurity potential strength, where i , j are the band
indexes. i= j denotes the intraband and i� j denotes the interband
potential strength with Uij =Uji and Gi is the bare Green’s function.
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2. Strong potential limit

Due to the presence of an additional band, a new param-
eter comes into play in the unitary limit, the ratio of the
interband scattering to the intraband scattering. This leads to
three distinct cases in the large potential limit.

a. Strong potential limit I: U11=U22�U12

In this case, intraband scattering dominates and in the
limit the self-energies reduces to

�1,0 = − nimp
g1,0

�g1,0
2 − g1,1

2 �
, �B5�

�1,1 = nimp
g1,1

�g1,0
2 − g1,1

2 �
, �B6�

�2,0 = − nimp
g2,0

�g2,0
2 − g2,1

2 �
, �B7�

�2,1 = nimp
g2,1

�g2,0
2 − g2,1

2 �
. �B8�

It is clear that in this limit, states within a given band are
broadened only by interband-scattering processes.

b. Strong potential limit II: U11=U22=U12

In this very special case, for strong potentials the self-
energies become

�1/2,0 = − nimp
g1,0 + g2,0

�g1,0 + g2,0�2 − �g1,1 + g2,1�2 , �B9�

�1/2,1 = nimp
g1,1 + g2,1

�g1,0 + g2,0�2 − �g1,1 + g2,1�2 . �B10�

In this case, both the bands have identical self-energies. As
discussed in the text, it corresponds to the presence of bound
states at low energies in the s� state so we devote some
attention to it.
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